Soal Pembahasan logaritma

Materi Soal Pembahasan Algoritma:

–    Pengertian  logaritma.

–    Sifat-sifat logaritma (operasi aljabar logaritma).

–    Penentuan logaritma dan antilogaritma dengan tabel     atau kalkulator.

–    Logaritma untuk perhitungan.

Tujuan Pembelajaran siswa dapat:

–    Menyimpulkan atau mendefinisikan logaritma dan sifat – sifat logaritma

–    Mengubah bentuk logaritma ke dalam bentuk pangkat, dan sebaliknya.

–    Menentukan hasil operasi aljabar pada bentuk logaritma dengan mengaplikasikan rumus – rumus bentuk logaritma.

–   Menentukan logaritma suatu bilangan dengan menggunakan tabel logaritma atau kalkulator.

–    Menentukan antilogaritma suatu bilangan dengan menggunakan tabel antilogaritma atau kalkulator.

–    Menggunakan logaritma untuk perhitungan.

Soal pilihan ganda Download

Soal Essay/uraian Download

Pembahasan pilihan ganda Download

Pembahasan uraian Download

 

Contoh soal:

1.  Jika 2log x = 3
     Tentukan nilai x = ….
            Jawab:
            2log x = 3  à x = 23
                                     x = 8.
2.  Jika 4log 64 = x
     Tentukan nilai x = ….
            Jawab:
            4log 64 = x  à 4x = 64
                                        4x = 44
                            x = 4.
3.  Nilai dari 2log 8 + 3log 9 = ….
            Jawab:
            = 2log 8 + 3log 9
            = 2log 23 + 3log 32
            =  3 + 2
            =  5
4.  Nilai dari 2log (8 x 16) = ….
            Jawab:
            = 2log 8 + 2log 16
            = 2log 23 + 2log 24
            =  3 + 4
            =  7
5.  Nilai dari 3log (81 : 27) = ….
            Jawab:
            = 3log 81 – 3log 27
            = 3log 343log 33
            =  4 – 3
            =  1
6.  Nilai dari 2log 84 = ….
            Jawab:
            = 2log 84
            = 4 x 2log 23
            = 4 x 3
            = 12
7.  Nilai dari 2log Ö84 = ….
            Jawab:
            = 2log Ö84  à
            = 2 x 2log 23
            = 2 x 3
            = 6
8.      Jika log 100 = x
Tentukan nilai x = ….
                        Jawab:
                        log 100 = x  à 10x = 100
                                    10x =  102
                                   x = 2.
9.      log 3 = 0,477 dan log 2 = 0,301
Nilai log 18 = ….
log 3 = 0,477 dan log 2 = 0,301
log 18 = log 9 x 2
                        = log 9 + log 2
                        = log 32 + log 2
                        = 2 (0,477) + 0,301
                        = 0,954 + 0,301
                        = 1,255
10.  log 2 = 0,301 dan log 5 = 0,699
Nilai log 5 + log 8 + log 25 = ….
log 2 = 0,301 dan log 5 = 0,699
= log 5 + log 8 + log 25
            = log 5 + log 23 + log 52
= log 5 + 3.log 2 + 2.log 5
= 0,699 + 3(0,301) + 2(0,699)
= 0,699 + 0,903 + 1,398
= 3,0
11.      Tentukan nilai dari :
(a). log 1000          dan      (b).2 log 128
Penyelesaian :
(a). Misalkan log 1000 = y
log 1000 = 10  log 1000 = 10log103 = y
103 = 10y         (definisi)
 y = 3
(b). Misalkan 2log 128  = x
          2log 128 = 2log 27 = x
       27 = 2x
       x = 7
12.      Tentukanlah atau hitunglah nilai dari
(a) log 234                         (b). log 23,4                 (c). log 2,34
(d). log 0,234                     (e). log 0,000234
Penyelesaian :
(a). log 234 = log (2,34 x 102) = log 2,34 + log 102 = log 2,34 + 2
Dengan memperhatikan atau membaca logaritma biasa, nilai log 2,34 berada pada baris yang dikepalai oleh 23 dan di bawah kolom yang dikepalai oleh 4. Hal ini berarti log 2,34 = 0,369. Jadi, log 234 = 0,369 + 2 = 2,369.
Catatan :
Bilangan 0,369 disebut mantisa (bagian desimal) dan 2 disebut karakteristik (bagian bulat). Dalam hal ini mantisa logaritma tidak pernah negatif, tetapi 0 mantisa < 1.
(b). log 23,4 = log (2,34 x 101) = log 2,34 + log 10 = log 2,34 + 1 = 0,369 + 1 = 1,369.
(c). log 2,34 = 0,369
(d). log 0,000234 = log (2,34 x 10-4) = log 2,34 + log 10-4 = 0,369 – 4 = -3,631.

Artikel Terkait

Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

Budisma.web.id © 2014